Search results for "Carbon network"

showing 2 items of 2 documents

Nanomechanics of individual aerographite tetrapods

2017

Carbon-based three-dimensional aerographite networks, built from interconnected hollow tubular tetrapods of multilayer graphene, are ultra-lightweight materials recently discovered and ideal for advanced multifunctional applications. In order to predict the bulk mechanical behaviour of networks it is very important to understand the mechanics of their individual building blocks. Here we characterize the mechanical response of single aerographite tetrapods via in situ scanning electron and atomic force microscopy measurements. To understand the acquired results, which show that the overall behaviour of the tetrapod is governed by the buckling of the central joint, a mechanical nonlinear mode…

3D carbon networksMaterials scienceScienceTechnische FakultätHingeGeneral Physics and AstronomyIngenieurwissenschaften [620]Nanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionUnknownlawTetrapod (structure)Aerographiteddc:5AerographiteAerographite 3D carbon networks porous materialsMultidisciplinaryGrapheneFaculty of EngineeringQarticleGeneral Chemistry021001 nanoscience & nanotechnologyFinite element method6200104 chemical sciencesBucklingddc:500ddc:6200210 nano-technologyPorous mediumScholarlyArticleporous materialsNanomechanicsNature Communications
researchProduct

N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

2014

The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affect…

Models MolecularMacrocyclic CompoundsHydrogenNitrogenchemistry.chemical_elementCarbon nanotubeConjugated systemCatalysislaw.inventionsymbols.namesakeFragmentation (mass spectrometry)lawCarbon networkDopingOrganic chemistryBond cleavageExergonic reactionChemistryNanotubes CarbonOrganic ChemistryChemistry (all)General ChemistryTransition stateCarbonGibbs free energyNanotubeMacrocycleChemical physicssymbolsDensity functional calculationHydrogenChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct